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Abstract. Large wildfires (>50,000 ha) are becoming increasingly common in semiarid
landscapes of the western United States. Although fuel reduction treatments are used to miti-
gate potential wildfire effects, they can be overwhelmed in wind-driven wildfire events with
extreme fire behavior. We evaluated drivers of fire severity and fuel treatment effectiveness in
the 2014 Carlton Complex, a record-setting complex of wildfires in north-central Washington
State. Across varied topography, vegetation, and distinct fire progressions, we used a combina-
tion of simultaneous autoregression (SAR) and random forest (RF) approaches to model dri-
vers of fire severity and evaluated how fuel treatments mitigated fire severity. Predictor
variables included fuel treatment type, time since treatment, topographic indices, vegetation
and fuels, and weather summarized by progression interval. We found that the two spatial
regression methods are generally complementary and are instructive as a combined approach
for landscape analyses of fire severity. Simultaneous autoregression improves upon traditional
linear models by incorporating information about neighboring pixel burn severity, which
avoids type I errors in coefficient estimates and incorrect inferences. Random forest modeling
provides a flexible modeling environment capable of capturing complex interactions and non-
linearities while still accounting for spatial autocorrelation through the use of spatially explicit
predictor variables. All treatment areas burned with higher proportions of moderate and high-
severity fire during early fire progressions, but thin and underburn, underburn only, and past
wildfires were more effective than thin-only and thin and pile burn treatments. Treatment units
had much greater percentages of unburned and low severity area in later progressions that
burned under milder fire weather conditions, and differences between treatments were less pro-
nounced. Our results provide evidence that strategic placement of fuels reduction treatments
can effectively reduce localized fire spread and severity even under severe fire weather. During
wind-driven fire spread progressions, fuel treatments that were located on leeward slopes
tended to have lower fire severity than treatments located on windward slopes. As fire and fuels
managers evaluate options for increasing landscape resilience to future climate change and
wildfires, strategic placement of fuel treatments may be guided by retrospective studies of past
large wildfire events.
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INTRODUCTION

With a warming climate combined with a legacy of fire
exclusion, large wind-driven wildfire events are becom-
ing more common in semiarid landscapes of the western
United States (Miller et al. 2012, Stephens et al. 2014,

Abatzoglou and Williams 2016). In forested areas that
burn mostly as stand-replacing wildfires, an additional
concern is that large (>50,000 ha), high-severity fires can
accelerate vegetation responses to climate change (Stav-
ros et al. 2014, Coop et al. 2016, Crausbey et al. 2017,
Tepley et al. 2018). Landscape restoration treatments are
often used to mitigate the impacts of future wildfires by
implementing treatments focused on reducing surface
and canopy fuel loads through mechanical removal of
live and dead trees and by using prescribed fire to mimic
the influence of wildfires under controlled weather
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conditions (Agee and Skinner 2005, Stephens et al.
2014). Planning and implementing landscape restoration
treatments requires considerable investment and, over
the past few decades, the footprint of treated areas has
been dwarfed by wildfire area burned in western North
America (Barnett et al. 2016, Schoennagel et al. 2017).
Research is needed to characterize the ability of different
treatments to reduce wildfire spread and severity, the
weather and biophysical conditions under which they
are expected to be most effective, and the longevity of
treatment effectiveness. Such information is essential for
prioritizing landscapes to maximize the ecological and
economic benefits of treatment.
Over the past decade, numerous post-fire studies have

evaluated the effectiveness of fuel reduction treatments
at mitigating fire behavior and post-fire tree mortality
and other fire effects in fire-prone forests (Stephens et al.
2012, Hessburg et al. 2015, Prichard et al. 2017). A com-
mon finding is that past fires generally act as a short-
term barrier to fire spread (Teske et al. 2012, Parks et al.
2015, Stevens-Rumann et al. 2016) but that duration of
treatment effectiveness depends on site productivity and
the rate of accumulation of flammable live and dead sur-
face fuels. Once post-fire live and dead fuels reach levels
that support fire spread, treatments still can mitigate the
severity of subsequent wildfires for up to 20 yr (Prichard
et al. 2017).
However, both treatment effectiveness and longevity

can vary by treatment type. Mechanical thinning of for-
ests generally reduces the potential for crown fire, but
where surface fuels support intense surface fire, post-fire
tree mortality can be comparable to untreated forests
(Safford et al. 2009, Prichard et al. 2010, Ful�e et al.
2012). Pile burning is commonly used to reduce post-
harvest surface fuels, and studies have reported a reduc-
tion in subsequent wildfire severity following this treat-
ment relative to unmanaged forests (Strom and Ful�e
2007, Safford et al. 2009). Chipping and mastication are
alternative treatments to fire, but results from field
experiments suggest that these treatments can promote
long-duration smoldering fires with substantial soil heat-
ing, which can lead to high tree mortality and impact
understory vegetation recovery (see Kreye et al. 2014 for
a review).
Furthermore, studies have shown that treatment effec-

tiveness is contingent on fire weather, landscape posi-
tioning relative to wind and fire spread direction, and
plume dynamics, which can drive fire growth and behav-
ior independently of local weather conditions. For exam-
ple, Graham (2003) found that past prescribed burns
and wildfires did not alter fire spread or behavior during
a 24,000-ha single-day run of the 2002 Hayman Fire.
Similarly, Turner and Romme (1994) found that, under
extreme fire weather days in the 1988 Yellowstone fires,
the fire was driven by top-down climatic variables with
little evidence of bottom-up influences of topography or
fuels. Similar results were found for the 2013 Rim Fire in
the Sierra Nevada where plume-dominated fire weather

led to high-severity fire regardless of vegetation type and
pre-burn surface fuel loads (Lydersen et al. 2014). Dur-
ing the 2011 Wallow Fire in Arizona, severity of wild-
land–urban interface fuel treatments was dependent on
neighboring forest conditions and resultant fire severity
delivered to fuels treatments (Johnson and Kennedy
2019).
Results from these studies suggest that, while fuel

reduction treatments are an effective tool for mitigating
future fire severity, their ultimate effectiveness is context
specific and related to treatment type, the surrounding
forest mosaic, their biophysical setting, and fire weather.
Such complexity creates difficulties in predicting future
treatment success and landscape prioritizations for iden-
tifying locations of future treatments on the landscape.
To this end, plot-level evaluations provide a standard-
ized method for evaluating treatment effectiveness while
attempting to control for variability in fire behavior
related to fire weather, topography, and biophysical envi-
ronments (e.g., Prichard et al. 2010, Lydersen et al.
2014). However, field data are limited in their inference
space given their low sample size. As a complement to
field studies, retrospective landscape analyses of remo-
tely sensed fire severity evaluate data on fire extent and
severity across large contiguous landscapes. Such data
are capable of quantifying both the average effect of a
given treatment over the course of a fire or multiple fires,
as well as the variability in treatment effectiveness over a
range of biophysical settings and fire progressions. These
analyses develop statistical relationships between fire
severity and a variety of bottom-up variables (i.e., topo-
graphic position, vegetation patterns, and fuel treat-
ments) and top-down variables (i.e., fire weather and
climate) to interpret main drivers of observed severity
patterns and help predict future behavior.
Empirical models have the dual goal of describing the

complex relationships between fire severity and its dri-
vers as well as controlling for spatial autocorrelation
(SA) that is inherent to all contagious processes. Spatial
autocorrelation present in regression model residuals
violates the assumption that they are independent and
identically distributed and has been shown to result in
biased coefficient estimates and inflate model signifi-
cance (Dormann et al. 2007). Methods generally
employed to account for SA are to (1) use a spatially
explicit model, (2) establish a minimum allowable dis-
tance between sample points to exclude fine-scaled SA
from analyses a priori, and (3) apply spatial eigenvector
mapping, which develops a series of multi-scaled spatial
covariates (Dray et al. 2006). Simultaneous autoregres-
sion modeling (SAR) has been used in several past stud-
ies of fuel treatment effectiveness and other drivers of
fire severity in large fire events, which incorporates SA
directly into a linear model through a spatially explicit
error term, which improves coefficient estimates, reduces
Type I error rates in assessing variable significance, and
improves model inference where the SA component is
large (Prichard and Kennedy 2014, Stevens-Rumann
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et al. 2016, Kennedy and Prichard 2017). However, these
models are inherently linear in functional form and non-
linear relationships and interactions among predictor
variables must be stated explicitly. Other recent studies
have attempted to model these complex relationships
using machine learning algorithms such as random for-
est (RF) or boosted regression trees to evaluate the dri-
vers of fire severity, including past forest and fire
management, and the relative importance of these pre-
dictor variables (Coppoletta et al. 2016, Zald and Dunn
2018; Povak et al., 2020). Spatial autocorrelation in these
models is often removed a priori using a minimum dis-
tance between sample points. These two modeling
approaches, SAR and machine learning, both appear to
be promising paths to improving our understanding of
the main drivers of fire severity patterns, but no formal
comparisons among these methods exist in the fire sever-
ity modeling literature to our knowledge. Zald et al.
(2016) made comparisons between SAR and RF models
in estimating forest carbon density within a watershed in
the Cascades Mountains of Oregon, USA. The authors
found that RF models excelled in identifying important
predictor variables and modeling key nonlinear relation-
ships not captured by SAR, but SAR allowed for more
traditional statistical inference and significance testing.
In this study, we evaluated landscape patterns of fire

severity using past fuel treatment records and fire sever-
ity imagery for the 2014 Carlton Complex fires using
both SAR and RF methods as complementary modeling
frameworks. The Carlton Complex was the largest wild-
fire event in Washington state history, and much of the
fire progressions burned under extreme weather condi-
tions with strong sustained winds and explosive fire
growth. Because the Carlton Complex burned over
many recent fuel treatments in forested areas and varied
terrain, it offered an opportunity to evaluate how fuel
treatments may have mitigated fire severity under excep-
tional weather conditions across a wide range of bio-
physical settings. In a previous study, Prichard and
Kennedy (2014) evaluated landscape fuel treatment
effectiveness in the 2006 Tripod Fires, which are located
just north of the Carlton Complex, and reported that
thinning and burning or burning alone generally either
acted as complete barriers or mitigated fire severity even
under the largest fire growth days. However, preliminary
assessments of fuel treatment effectiveness in the 2014
Carlton Complex fires indicated that many past fuel
treatments had substantial tree mortality and were less
effective overall than in the 2006 Tripod Complex (Tre-
bon and Johnson 2014). Several notable differences
between the 2006 and 2014 large fire events suggest that
fuel treatments were particularly challenged in the 2014
Carlton Complex fires. Specifically, of the 103,000 ha
burned, over 67,000 ha burned within a single burn per-
iod on 17 July 2014; fire spread was associated with wind
gusts over 15 m/s, column-driven fire behavior, and mass
ignitions in advance of the flaming fire front. In con-
trast, the 2006 Tripod Complex burned over 70,000 ha

over a 2-month period with episodic fire growth over
longer periods and less severe wildfire conditions. Addi-
tionally, <40% of the 2014 Carlton Complex fire area
was forested; the majority of the vegetation burned was
semiarid grassland and shrub steppe. The Carlton Com-
plex provided an ideal landscape to assess fuel reduction
treatment effectiveness as it (1) represented a typical east
Cascade landscape matrix of forest and rangeland vege-
tation, which are tightly controlled by topographic posi-
tion and elevation, (2) spanned a large area across
diverse climate, topography, and vegetation conditions,
(3) burned under both benign and extreme fire weather
conditions, which allowed us to identify potential thresh-
old conditions under which treatments became ineffec-
tive, and (4) included a range of fuel treatment types.
The main objective of this study was to evaluate the

effectiveness of previous fuel treatments and other dri-
vers of fire severity within forested areas in mitigating
fire effects within the context of other biophysical drivers
of fire severity. The 2014 Carlton Complex was a clear
outlier relative to historical fires in the region due to its
extreme fire behavior and size (Cansler and McKenzie
2014, Hessburg et al. 2016). As such, it provides an
opportunity to learn from both treatment successes and
failures and to provide guidance for the type, size, and
landscape configuration of fuel treatments that may be
most effective under increasingly severe wildfire events
under climate change. Because fuel treatment effective-
ness cannot be isolated from other factors driving fire
severity, we used two complementary methods of land-
scape analysis that examined the spatial drivers of fire
severity while accounting for SA. Following the methods
of Povak et al. (2020), we further extend the RF model-
ing framework to explore spatial variability in predictor
variable importance across the study area to help iden-
tify local instances of treatment effectiveness and to
quantify model variance explained that is both shared
and unique to a variety of bottom-up and top-down pre-
dictors of fire severity.

METHODS

Study area

The 2014 Carlton Complex fire burned over
100,000 ha of semiarid grasslands and forests of north-
central Washington State. Of the burned area, 56% is
classified as grassland, 37% forestland, 4% sparse or
unvegetated, and 3% developed (LANDFIRE 2012).
Climate is semiarid with cold winters and warm, dry
summers. Mean annual temperatures range from a low
of �0.1°C in January to a mean annual high of 31.1°C
in August. Total annual average precipitation is 32 cm
with the majority falling as snow. Treatment areas are
confined to dry forest types, ranging from ponderosa
pine at low elevations (500–700 m) to mixed conifer for-
ests dominated by ponderosa pine, Douglas-fir, western
larch, and lodgepole pine at mid-elevations (700–
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1,200 m) and Engelmann spruce, subalpine fir, and
lodgepole pine at high elevations (>1,200 m).
The burned area was partitioned into two study areas

(north and south, Fig. 1) to focus on forested areas with
past fuel treatments and to create more manageable
inputs for SAR and RF analyses, which are both compu-
tationally intensive (Kennedy and Prichard 2017). The
north study area was also dominated by severe, wind-dri-
ven fire progressions whereas the south study area had
more complex progressions and burned under a range of
fire weather conditions. Vegetation types within the two
study areas were comparable, with mosaics of closed-
canopy mixed conifer forests and grasslands, but the

north study area had a greater proportion of continuous
montane mixed conifer forest than the south study area.

Data layers

Three fire severity indices were evaluated as response
variables including the difference normalized fire sever-
ity index (dNBR), relative difference normalized fire
severity index (RdNBR; Miller and Thode 2007) and the
relativized burn ratio (RBR), which also offers a relative
index of change to soil and vegetation reflectance but
corrects known issues with high or low outlier values
resulting from a square root transformation in the

FIG. 1. Carlton Complex final burn perimeter with a burned area reflectance classification of the north and south study areas
and location within north-central Washington State, USA. RBR, relativized burn ratio.
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RdNBR denominator term (Parks et al. 2014a). Source
images were taken from cloud-free pre- and post-burn
Landsat images (Monitoring Trends in Burn Severity
https://www.mtbs.gov). During the summer of 2015, we
conducted composite burn index surveys on 170 post-
burn monitoring plots. These were used to validate fire
severity classifications and determine which fire severity
index had the highest correlation with assessed plot
severity. Fire severity classifications of unburned, low,
moderate, and high severity from RBR values followed
Parks et al. (2014a) for the 2006 Tripod Fire (Spur Peak)
area.
Fuel treatment records were obtained from the

Methow Valley Ranger District from 1995 to 2014. Most
records were in the Forest Service Activity Tracking Sys-
tem (FACTS), but additional landscape prescribed burns
and older treatments were compiled from secondary lay-
ers obtained from fire and fuels managers at the ranger
district. Fuel treatment perimeters were overlaid on a
pre-burn National Agriculture Information Program

(NAIP) image (2011), and perimeters were edited to
more closely correspond to treatment boundaries. We
also used paper records to attribute older treatments
(pre 2000) with treatment type, description, harvest
dates, and prescribed burn dates (T. Leuschen, personal
communication). Final fuel treatment fields included
treatment type (Type), harvest date, time since fire (ap-
plicable to prescribed fires and wildfires), number of fires
(in the case of multiple past prescribed burns or wildfires
had burned a pixel), distance from treatment edge (cal-
culated as the distance from treatment edges for each
treated pixel) and treatment size (ha; Table 1). Treat-
ments were grouped into general categories including
clear-cut (CC), clear-cut and broadcast burn (CCBB),
thin-only harvest (Thin), thin and understory prescribed
burn (ThinUB), thin and pile burn (ThinPB), prescribed
underburn (UB), past wildfire (WF), and no treatment
(None). Forested areas that had no record of treatment
were either harvested prior to 1995 or prescribed burned
before 2000 were categorized as having no treatment.

TABLE 1. Predictor variables for simultaneous autoregression models.

Data set and variable Description

Treatment
Edge distance from past treatment edge, m (prescribed burns and past wildfires only)
Number of fires number of past fires
TSF time since fire, yr (prescribed burns and past wildfires only)
Type clear-cut (CC), clear-cut and broadcast burn (CCUB), thin-only harvest (Thin), thin and broadcast

prescribed burn (ThinUB), thin and pile burn (ThinPB), landscape burn (UB), past wildfire (WF),
no treatment contrast (None).

Size treatment size (ha)
Topographic variables
Elev elevation, m
Slope slope gradient, %
TPI100, TPI600, TPI1200 topographic position indices calculated for 100, 600, and 1,200 m neighborhoods
Ridge100,

Ridge600, Ridge1200
ridge-like classifications of TPI at the three neighborhood scales

Valley100,
Valley600, Valley1200

valley-like classifications of TPI at the three neighborhood scales

SRad average annual solar radiation, W/m2

SRadMax summer solar radiation, W/m2 (July average)
Vegetation and fuels
CanCov canopy cover, % (LANDFIRE 2012)
CBH canopy base height, m (LANDFIRE 2012)
CH canopy height, m (LANDFIRE 2012) (m)
FM40 standard fire behavior fuel models (Scott and Bergen 2005)
Vegetation type broad classification based on existing vegetation type (LANDFIRE 2012). developed (Dev), dry

mixed conifer (DMC), Engelmann spruce–subalpine fir and lodgepole pine (ESSF), grassland
(Grass), moist mixed conifer (MMC), ponderosa pine (PP), riparian vegetation (Rip), shrubland
(Shrub)

Weather variables
(summarized by progression
interval)

weather summarized by Douglas-Ingram RAWS hourly data for each progression interval

Wind average wind, m/s
MaxGust maximum wind gust, m/s
WNSpeed average wind, m/s, predicted by progression interval in Wind Ninja.
Temp average temperature, °C
MaxTemp maximum temperature, °C
RH average relative humidity, %
MinRH minimum relative humidity, %
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Topographic indices were calculated from digital eleva-
tion models and included elevation (Elev, m), slope (de-
grees), and solar radiation (SolRad [average annual] and
SolRadMax [July maximum], W/m2). Topographic posi-
tion indices (TPI) were calculated within 100-, 600-, and
1,200-m neighborhoods of each pixel using methods
developed byWeiss (2001). This method compares the ele-
vation of each DEM pixel with the mean elevation within
the nearest neighborhood of each pixel. Valley positions
are classified as negative TPI (�2 to 0), and ridge posi-
tions are classified as positive TPI values (0 to 2).
Fire progression layers were compiled from opera-

tional firefighting records from the Carlton Complex
Fire Box, obtained from the Okanogan-Wenatchee
supervisor’s office (Wenatchee, Washington, USA;
Appendix S1: Fig. S1). Progressions were validated with
IR imagery and corrected for overlaps and other digiti-
zation errors. Hourly fire weather data were taken from
the Douglas Ingram Ridge Remote Area Weather Sta-
tion, located above Alta Lake State Park, Pateros, Wash-
ington, USA (48.0333° N, 119.9667° W). Hourly RAWS
data were summarized by progression interval
(Appendix S1: Table S1). For example, minimum relative
humidity and maximum temperature and wind gusts
were averaged for the hours represented by each interval.
Because wind fields are mediated by terrain and the
potential limitations of using a single RAWS station for
wind, we also calculated wind grids in Wind Ninja
(Forthofer et al. 2014a, b) using weather summarized by
progression interval for the three nearest RAWS sta-
tions, including Douglas-Ingram, First Butte, and North
Cascades Smoke Jumpers Base. Wind Ninja surfaces
were processed by progression interval to interpolate
between weather stations and predict local wind fields
across the varied topography of our study areas.
Existing vegetation type and canopy fuels layers were

obtained from the LANDFIRE 2012 refresh to repre-
sent pre-fire fuels and vegetation for each 30-m pixel
(data available online).6 Vegetation was reclassified to
broader vegetation categories including developed
(Dev), dry mixed conifer (DMC), Engelmann spruce–
subalpine fir and lodgepole pine (ESSF), grassland
(Grass), moist mixed conifer (MMC), ponderosa pine
(PP), riparian vegetation (Rip) and shrubland (Shrub).

Statistical analyses

Based on relationships with CBI, RBRwas selected as
the response variable for all subsequent analyses. Rela-
tionships between fire severity indices and CBI (n = 170)
were strong with coefficients of determination ranging
from 0.8140 for dNBR, 0.8199 for RBR and 0.8455 for
RdNBR. Although classification accuracies were com-
parable, RBR had the highest overall classification accu-
racy and relatively even classification errors in low and
moderate categories (Table 2). Across all three severity

indices, classifications were accurate (>90%) for high
and unburned categories of severity but with mixed
accuracy for low and moderate severity. However, 38 of
the 40 classification errors were adjacent categories (e.g.,
moderate but measured as low or low but measured as
moderate). Of the 15 moderate severity classification
errors using the RBR index, 5 were moderate and 10
were low based on CBI values; of the 19 low severity
classification errors, 1 was high, 13 were moderate and 5
were low. Based on field verification, sites with unburned
and low classifications were associated with <20% tree
mortality with only two unburned plots and on low
severity plot having mortality higher than 20%.
We first evaluated treatment effectiveness using pixel

summaries of RBR for treated areas only. Fuel treat-
ments are generally designed for multiple objectives,
including thinning from below to improve forest health
and reduce crown fire potential, salvage harvesting fol-
lowing insect and disease outbreaks, restoring dry forest
habitat, and prescribed burning to reduce accumulated
surface fuels (Agee and Skinner 2005, Stephens et al.
2012). We considered past harvests and fuel reduction
treatments as “treatment types” within this study.
We first classified RBR within treated areas to evalu-

ate patterns of fire severity classes across different treat-
ment types, time since fire, and days of the Carlton
Complex fire. For each treatment unit, we quantified the
percent area in four fire severity classes including
unburned (≤42), low (>42 to ≤158), moderate (>158 to
≤304), and high severity (> 304). Based on these classifi-
cations, we summarized percent of unburned, low, mod-
erate, and high severity pixels within treatment units
across early (15–18 July) and late (19 July–10 August)
progression intervals. The number of units within each
treatment type varied widely with low representation of
ThinPB in both early and late progression data sets
(n = 6 and 11, respectively) and ThinUB in the early
progression data set (n = 10). An exploratory analysis of
variance was conducted to examine statistical differences
of the percentage of treatment area that was either
unburned or low severity among treatment types.

TABLE 2. Classification accuracy of dNBR, RNBR, and RBR
classifications of fire severity.

Burn severity
classification N dNBR (%) RdNBR (%) RBR (%)

High 52 94 90 90
Moderate 29 62 55 48
Low 35 31 23 46
UB 54 93 96 96
Total 170 75 72 76

Notes: Fire severity indices are difference normalized fire
severity index (dNBR), relative difference normalized fire sever-
ity index (RdNBR), and the relativized burn ratio (RBR). Clas-
sification bins for dNBR and RdNBR were used from Miller
and Thode (2007); location-specific bins were used for the Spur
peak area, which is within 30 km of the Carlton Complex
perimeter (Parks et al. 2014a).

6 https://www.landfire.gov
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We then used a pair of correlative modeling techniques
across a portion of the Carlton Complex extent to iden-
tify key biophysical drivers of fire severity patterns and
to determine the relative effect of treatments on mitigat-
ing fire severity. Simultaneous autoregression models
were evaluated using the R programming language (R
Development Core Team 2012), to predict fire severity
indices by fuel treatment, topography, vegetation and
fuels, and weather variables across the north and south
study areas, including untreated pixels (Table 1). These
models include a linear combination of predictor vari-
ables as well as spatially autocorrelated errors

Y ¼ bX þ kW Y � bXð Þ þ e: (1)

In our simultaneous autoregression model, Y is RBR
and b is the vector of coefficients estimated for the
design matrix of explanatory variables (X). The k coeffi-
cient is an estimate of the strength of autocorrelation
and W is the neighborhood weighting matrix. The auto-
correlated error term (kW[Y – bX]) accounts for both
intrinsic autocorrelation and any potential missing auto-
correlated explanatory variables. These are combined
with the explanatory variables to predict Y. The value e
is the remaining unexplained variability in Y.
For categorical variables, base contrasts (i.e., the cate-

gory to which others were statistically compared within
the model) were no treatment (none) for treatment type,
and grass for vegetation type. Following Kennedy and
Prichard (2017), we performed an analysis of the effect
of neighborhood size on model inference and found that
the 30-m neighborhood yielded the minimum Akaike
Information Criterion (AIC) value, and thereby was
used to define the weight matrix of the SAR neighbor-
hood (Beale et al. 2010, Kennedy and Prichard 2017).
Models of fire severity were compared using AIC
(Akaike 1974), and final models were selected to include
significant covariates (P < 0.05) that contributed to the
lowest AIC values. All models were estimated using the
spautolm function in the spdep package v1.0.2 in R
(Bivand and Piras 2015). To further assess the contribu-
tion of spatial autocorrelation to predictions, we esti-
mated an intercept-only model (no explanatory
variables, only the spatially autocorrelated error terms).
We also calculated the correlation between the intercept-
only model predictions and the final SAR model predic-
tions with the lowest model AIC. A high correlation
would imply little contribution of the explanatory vari-
ables to model predictions and that the spatial autocor-
relation term explained most of the variability in RBR.
Random forest (Breiman 2001) is an ensemble regres-

sion tree model in which hundreds to thousands of
regression trees (De’ath and Fabricus 2000) are devel-
oped with iterative subsets of the data and predictions
are averaged across trees. For this application, we set the
number of trees to 2,500, which increased stability in
local importance estimation. Model performance was
evaluated using out-of-bag variance explained (R2

oob).

Variable importance measures were calculated using
conditional forests with the cforest function in the party
v1.3.3 package in R (Strobl et al. 2008), which provided
unbiased estimates of importance. Variable importance
was assessed globally across all sample points, and
locally for individual sample points. Importance values
were calculated for each predictor variable as the differ-
ence in out-of-bag mean squared error of the original
data compared to when the values are randomly per-
muted. Differences are then averaged across individual
regression trees to calculate local importance values for
each sample point and then averaged across sample
points to calculate global importance values for each
variable. Importance values are unbounded; values <0
indicate unimportant variables, while large positive val-
ues indicate highly important variables. Global values
were calculated using the varimp function in the party
v1.3.3 package, while local importance was calculated
using the generateFeatureImportanceData function
within the mlr package v2.13 in R (Bischl et al. 2016).
Importance values are unbounded; values <0 indicate
unimportant variables, while large positive values indi-
cate highly important variables. Local importance was
scaled where all values <0 were excluded (i.e., converted
to NA) and remaining values were scaled between 0
(lowest) and 100 (highest) using a linear transformation.
Scaled local importance values were subsequently
mapped for further inspection.
Consistent with the SAR modeling, RF models were

developed separately for the north and south using the
same global set of predictors as the SAR models. Vari-
able reduction was conducted for each model to balance
model complexity with model performance. Multi-
collinearity was assessed prior to variable reduction
using r < |0.7|. Among correlated variables, those with
the highest correlation with RBR were retained. The
remaining variables were sequentially reduced using
backward elimination until R2

oob fell below 10% of the
maximum R2

oob for the full model. With few exceptions,
final predictor variable sets were similar among north
and south models following backward elimination.
Missing variables from one model were then added to
the other model to create a matching set, which aided in
inter-model comparisons. Final models were run using
the randomForestSRC v2.8.0 package (Ishwaran and
Kogalur 2018), which provided lower error rates com-
pared to conditional forests.
Spatial autocorrelation was accounted for in RF mod-

eling using a combination of subsampling and spatial
eigenvector mapping. To reduce the spatial dependency
among sample points and the computational burden,
the data set was sampled at 270-m spacing, which is
comparable to the methods of Kane et al. (2015) and
Zald and Dunn (2018). Greater spacing than 270-m
resulted in insufficient data to develop relationships
between predictor variables and fire severity. We then
used principal components of neighborhood matrices
(PCNM), a special case of spatial eigenvector maps,
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which incorporates spatial predictor variables into the
RF analysis (Borcard and Legendre 2002, Dray et al.
2006). Principal components of neighborhood matrices
also allowed for an examination of the dominant scales
at which spatial autocorrelation was most influential to
severity patterns. Principal components of neighbor-
hood matrices create a truncated Euclidean distance
matrix for all data points within a predefined distance
and perform a principal coordinates analysis on the
resultant distance matrix. The truncation distance was
set at 10,000-m for both study areas based on Moran’s I

correlograms calculated for the RBR response, which
assesses the level of spatial dependence across a series of
inter-point distances. From the resultant truncated dis-
tance matrix, a series of positive eigenvectors (PCNM
axes) were calculated and used as predictor variables in
the RF models. Backward elimination was conducted
separately on the PCNM axes, which were then
appended to the final set of predictors (Appendix S1:
Figs. S2, S3). Low-order PCNM axes retained following
backward elimination (e.g., PCNM axes 1, 2, or 3) repre-
sented large-scale (5–10 km) spatial autocorrelation,

FIG. 2. Percentage of fuel treatment areas classified as having burned at moderate to high severity, by fire date (e.g., 715 = 15
July 2014). Maximum wind gust (m/s) is displayed on the secondary y-axis.
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FIG. 3. Box plots of the percentage of pixels in treatment units categorized as unburned and low severity by treatment type for
early progression dates ranging from 15 July to 18 July and later progression dates ranging from 19 July to 10 August. Treatments
include thin only (thin), thin and pile burn (ThinPB), and thin and prescribed underburn (ThinUB), prescribed underburn only
(UB) and past wildfire (WF). Clear-cut and broadcast burn (CCBB) was not included in this comparison because this treatment
type was only present in the north study area. Box plot components are mid line (median), lower box edge (25th percentile), upper
box edge (75th percentile), open circles (max values).
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while higher-order axes (e.g., PCNM axes 5, 7, 11) repre-
sented meso-scale (2–3 km) spatial autocorrelation
(Appendix S1: Fig. S4). Once final models were devel-
oped, variance decomposition (Borcard et al. 1992) was
used to quantify both the unique and shared variance
explained by several predictor variable groups represent-
ing top-down down controls (i.e., climate, fire weather),
bottom-up controls (i.e., topography, fuels, and past
management), and spatial autocorrelation (represented
by PNCM axes). Residual variance is defined as the
remaining variance not explained by the models.

RESULTS

Burned area reflectance classification of treated areas

Overall, the percentage of unburned area and low
severity fires within treatments was much higher in later
progressions than early progressions. The majority of
area burned in our two study areas was between 15 July
and 18 July and is associated with reduced treatment
effectiveness within fuel treatment areas (Figs. 2, 3). The

period of 17–18 July in which 68,421 ha burned in <24 h
with maximum wind gusts >8 m/s, corresponding with a
peak in the percentage of treated areas that burned at
moderate and high severity (Fig. 2, Appendix S1:
Fig. S5). Higher severity within treated areas was also
observed between 29 July and 2 August. Treatments that
involved fire (ThinUB, UB and WF) had significantly
higher areas of unburned and low severity than Thin
and ThinPB units did even during early progression days
(Fig 3, Appendix S1: Table S2). However, disparate sam-
ples sizes existed among treatment units, with particu-
larly low representation in ThinPB and ThinUB units.

Spatial autocorrelation in fire severity

Moran’s I analysis of SA reflected broad-scale spatial
patterning in fire severity with high SA (I > 0.2) in RBR
for both study areas for distances up to 0.8 (south) to
1.8 (north) km and lower levels of SAwere detectable up
to 2 km in the south and 5 km in the north (Fig. 4).
Accordingly, k parameters for the SAR models, which
determine the amount of weight given to SA in the

FIG. 4. Spatial autocorrelation of fire severity (RBR), represented by Moran’s I, across distances from 0 to 20 km in the south
and north study areas of the 2014 Carlton Complex. Note log scale.

TABLE 3. Simultaneous autoregression (SAR) model results.

Model k R2 AIC

North
RBR ~ CanCov + Elev + SRadMax + Treatment + WNSpeed 0.9716 0.9539 2,463,861

South
RBR ~ CanCov + CovType + MaxTemp + Treatment + Valley1200 0.9684 0.9378 2,118,000

Notes: Predictor variables are listed in alphabetical order. The k coefficient is an estimate of the strength of autocorrelation.
AIC, Akaike information criterion.
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model, were >0.96 for both study areas, close to the max-
imum of 1.0 for that parameter (Table 3). The correla-
tion between the intercept-only SAR model predictions
and the final SAR model predictions was >0.90, imply-
ing that most of the variability in severity was explained
by the spatial structure.
For RF models, PCNM axes selected in backward

elimination were low-ordered axes that represented
meso- to broad-scale patterns of SA for both study areas
(2–10 km, Appendix S1: Figs. S2–S4); these were
PCNM1 in the south (second-leading RF importance),
and, in the north, PCNM2 and PCNM3 variables (first
and second leading RF importance). Principal compo-
nents of neighborhood matrices variables exhibited
higher overall importance in the north compared to the
south study area. All other PCNM axes included in the
model had low importance.

Simultaneous autoregression models

Final SAR models for both study areas were selected
to contain significant predictor variables that con-
tributed to lowest model AIC values (Table 3, Fig. 5).
Final models for north and south study areas contained
a combination of fire weather variables (wind and

ambient temperature) and biophysical variables includ-
ing vegetation, fuels, and landform. Of the three
response variables, RBR severity index exhibited the
lowest model AIC and was used in final models. In the
north study area, fire severity was positively correlated
with modeled wind speed (WNSpeed), elevation and for-
est canopy cover. Fire severity was negatively correlated
with solar radiation. In the south study area, wind and
elevation were not included in final models. Fire severity
was positively correlated with maximum temperature
but negatively associated with forest canopy cover as
well as valleys. Cover type was also a significant predic-
tor in the south with negative correlations with fire
severity in nonforest types and riparian forests.
Fuel treatments were important variables in SAR

models of fire severity for both study areas (Table 4).
With the exception of ThinPB treatments in the north,
all fuel treatments were negatively correlated with fire
severity. However, Thin and underburn (ThinUB) treat-
ments were associated with lower RBR than other treat-
ments. Other treatments that involved past fires
including UB and WF, were more comparable with Thin
treatments. Time since fire was a significant predictor
but did not contribute to lower model AIC and was not
included in the final SAR model of either study area.

FIG. 5. Observed and predicted fire severity patterns from simultaneous autoregression (SAR) models for the 2014 Carlton
Complex in central Washington State. Models were developed for the north (top row) and south (bottom row) study areas sepa-
rately. Predictions were broken down to the non-spatial (column 3) and spatial (column 4) components of the fitted values. There-
fore, predictions in column 3 + column 4 = column 2.

Article e02104; page 10 SUSAN J. PRICHARD ETAL.
Ecological Applications

Vol. 0, No. 0



TABLE 4. Estimates, standard error, and P values of simultaneous autoregression models (SAR) of fire severity by study area.

Carlton North Carlton South

Variable Estimate SE P Estimate SE P

Intercept 152.56 16.52 <0.0001 272.47 7.45 <0.0001
Treatment
CCBB �2.92 2.38 0.2204
Thin �5.64 1.64 0.0006 �6.94 3.43 0.0428
ThinPB 1.97 1.97 0.3174 �0.30 4.12 0.9419
ThinUB �9.36 2.11 <0.0001 �16.26 4.48 0.0003
UB �5.65 1.64 0.0006 �1.10 2.25 0.6251
WF �2.66 2.43 0.2737 �5.95 1.64 0.0003
CanCov 0.28 0.01 <0.0001 �0.06 0.01 <0.0001

Cover type
Bare – – – �8.03 0.56 <0.0001
Dev – – – �8.18 0.98 <0.0001
DMC – – – �0.20 0.88 0.8224
MMC – – – 1.08 0.73 0.1384
PP – – – 1.60 0.87 0.0674
Rip – – – �3.03 1.53 0.0473
Shrub – – – �1.83 0.38 <0.0001
Elev 0.29 0.01 <0.0001 – – –
Valley1200 – – – �1.02 0.07 <0.0001
MaxTemp – – – 0.47 0.21 0.0231
SolRadMax �0.03 0.00 <0.0001 – – –
WNSpeed 0.74 0.11 <0.0001 – – –

Notes: Treatment types include clear-cut and broadcast burn (CCBB), thin only (thin), thin and pile burn (ThinPB), thin and
prescribed underburn (ThinUB), underburn (UB) and past wildfire (WF). CanCov, canopy cover; cover types include bare ground
(Bare), developed/roads (dev), dry mixed conifer forest (DMC), moist mixed conifer forest (MMC), ponderosa pine forests (PP),
riparian vegetation (Rip), and shrublands (Shrub). –, Not applicable.
Bold values are significant at (P < 0.05).

FIG. 6. Predicted RBR vs. observed RBR for the north and south study areas using random forest modeling. Blue dashed lines
represent low-, moderate-, and high-severity thresholds on x- and y-axes.
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Of the landform variables we evaluated, elevation was
the most important predictor of fire severity in the north
study area, and maximum solar radiation was associated
with lower fire severity. In the south, fire severity had a
weak but significant positive relationship with elevation
and was significantly lower in valley bottoms. Based on
plotted comparisons of elevation and RBR across both
study areas, fire severity increased with elevation but
then declined at the highest elevations (i.e., over 1,400 m
in the north and 1,200 m in the south).
Vegetation cover and type also influenced fire severity

in both study areas. Forest canopy cover was positively
correlated with fire severity in the north but was nega-
tively correlated with severity in the south. Among the
fuels and vegetation predictors, cover type was an
important variable in the south with significantly lower
fire severity in riparian forests, shrublands, and non-veg-
etated areas and significantly higher fire severity in pon-
derosa pine forests. Canopy cover was an important
predictor in both models and had a positive relationship
with fire severity in the north and a slightly negative
relationship in the south.

Random forest models

Random forest modeling allowed for an explicit exam-
ination of the role of spatial autocorrelation in model
prediction and included the ability to model nonlinear
relationships and interactions among predictors and fire
severity by virtue of the regression tree model structure.
Model performance was higher for the north
(R2

oob ¼ 0:628) compared to the south (R2
oob ¼ 0:519)

study area. Models generally predicted high and moder-
ate severity well but tended to over predict low and
unburned pixels (Fig. 6).
Similar to SAR models, wind variables were important

in the north but less so for the south (Fig. 7). Max Gust
was the leading variable in the north, and severity
increased nonlinearly with increasing gust speeds, with
large increases in severity between 8 and 12 m/s. Maxi-
mum temperature was the leading variable for the south,
which had a positive linear relationship with fire severity.
Severity increased with increasing canopy cover in both
study areas, in contrast to SAR models in which a strong
positive relationship was found for the north and weak
negative relationship was found in the south.
The fuel treatment variable was moderately predictive

of fire severity for both study areas, and similar to SAR,
Thin, ThinUB, and UB exhibited the largest reductions
in severity across treatments. However, partial plots
showed comparatively little variation in severity
response to treatment across treatment types (Fig. 8).
Time since last fire was not a leading variable for either
study area.
Landform variables were generally more predictive of

fire severity patterns in the south than the north. Valley
bottom topography was a strong predictor in the south
but not the north, and severity generally declined as

topographic setting converged toward valley bottom set-
tings. Fire severity decreased with increasing solar radia-
tion for both study areas, but this variable had higher
importance in the south. Slope was generally a weak pre-
dictor of severity, and higher severities were found on
moderate slopes for both study areas. Elevation showed
an asymptotic pattern where severity increased with
increasing elevation until a point and then severities
leveled off (~1,000 m north, ~500 m south).
Local importance revealed that the strength of predic-

tor variable groups varied considerably across the two
study areas (Fig. 9). For the north study area, fuel and
vegetation variables were strongest in the west and south
(i.e., earlier in the fire progression) and SAwas strongest
in the eastern portion. Spatial autocorrelation was most
prominent in the north where the fire burned with very
high severity on the 17–18 July fire progression days.
This also corroborated results from the SAR model,
where large positive autocorrelated residuals (implying
higher severity relative to the explanatory variables) were
predicted in this region as well. In the south, weather

FIG. 7. Variable importance (reduction in mean squared
error) for the north and south study areas of the Carlton Com-
plex, ranked by mean predictor variable importance for both
sites. Predictor variables other than PCNM axes are defined in
Table 1. PCNM (1-3), Low-order Principal Components of
Neighborhood Matrices representing large-scale (5-10 km) spa-
tial autocorrelation, PCNM (5, 7, 11) higher-order axes repre-
senting meso-scale (2 – 3 km) spatial autocorrelation.
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variable importance was high overall and high impor-
tance generally corresponded with high-severity patches,
with the exception of the western edge where high
importance was associated with low-moderate severity
pixels that burned during benign fire growth days.
Despite having low overall importance in the RF mod-
els, topography importance was high in isolated patches,
corresponding with lower fire severity in valley bottoms
and low gradient slopes of both study areas.
Local importance for treatments varied across treat-

ment type and early vs. late progression days. Sample
points corresponding with high treatment importance
(importance > 0.75) generally had lower RBR compared
to those with low importance (importance ≤ 0.25;
Fig. 10, Appendix S1: Fig. S6). Differences among
observed RBR between low and high importance sample
points were greater for early progression days (more
extreme weather) compared to later progression days
and indicated that treatments were capable of reducing
burn severity under extreme weather condition, although
the incidence of treatment effectiveness was lower under
these extreme conditions. Prescribed underburn (UB)

and wildfire (WF) treatments in particular led to the
greatest disparities in observed RBR between low and
high importance (Appendix S1: Fig. S6).
Variance decomposition (Fig. 11) revealed high

shared variance across variable groups, particularly with
PCNM axes, suggesting a high level of broad-scale spa-
tial structure in covariates and the fire severity response.
Pure variance explained by any one variable group con-
tributed between 0 and 5% of the total variability in fire
severity. The largest contribution to variance explained
was shared between fuels, weather, and SA models in the
north (17.2%), and weather and SA models in the south
(13.6%).

DISCUSSION

Past research suggests that under extreme fire weather
conditions, thresholds to fire spread and severity are
effectively reduced, and the influence of terrain, vegeta-
tion, and biophysical setting are less important than
under milder weather conditions. As such, there is no
way to guarantee a given fuel reduction treatment or

FIG. 8. Partial dependence plots for the top nine predictor variables identified by random forest models used to explain fire
severity patterns for the 2014 Carlton Complex in central Washington State. Models were developed for the north and south study
areas separately. Values in parentheses indicate relative variable importance. Plots depict the marginal effect of a predictor variable
on predicted severity. Points represent severity predictions made for 25 values across the range of each predictor variable. Dashed
gray lines are lowess (locally weighted scatterplot smoothing) smoothed trend lines, and colored dashed lines are 2 9 SE of the low-
ess estimate. The opacity of each point was determined by the empirical density function of the predictor variable with darker hues
representing higher densities and lighter hues representing sparse data. An overlaid bar chart is used to represent predicted fire
severity by fuel treatment type for the north study area with consistently higher severity values than the south study areas. See
Table 1 for predictor variable descriptions.
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past wildfire will be effective at mitigating wildfire
spread and effects. Studies of fuel treatment effective-
ness within the 2006 Tripod Complex demonstrated
that fuel reduction treatments, particularly those that
involved past prescribed or wildfires, were effective
even under the most severe fire weather days (Prichard
et al. 2010, Lyons-Tinsley and Peterson 2012, Prichard
and Kennedy 2014). The 2014 Carlton Complex,
which burned adjacent to the 2006 Tripod Complex,
provided an opportunity to evaluate treatment effec-
tiveness in close spatial and temporal proximity across
both treated and untreated landscapes and across a
range of fire weather and under an exceptional wind-
driven fire event. Preliminary fire effects monitoring
(Trebon and Johnson 2014) for the Carlton Complex
suggested that fuel treatments did not fare as well as
in the Tripod Complex and supported more active fire
spread through treatment units and higher tree mor-
tality. Through spatial modeling of landscape fuel
treatment effectiveness under varied biophysical condi-
tions and fire weather in the Carlton Complex, we
found that fuel reduction treatments reduced severity
even under severe fire weather and that strategic place-
ment of treatments may be an effective strategy to
mitigate wildfire effects.

Across semiarid forested landscapes, there is growing
evidence that fine- to meso-scale vegetation patchworks
are more resilient to fire than large patches of continu-
ous forest cover because not all of the mosaic is generally
available to burn or modify fire behavior and effects
(Collins et al. 2007, Holden et al. 2010, Parks et al.
2015). Hessburg et al. (2005) used historical reference
data sets from photo interpreted (1930s–1950s) aerial
photography in the interior Columbia River Basin area
and found higher proportions of grassland and shrub-
land vegetation than modern reference landscapes. These
patterns were perpetuated by frequent low-intensity fire
events and likely contributed to lower levels of contagion
for insects, disease, and fire compared to modern land-
scapes. Historical reference data sets offer important
context for guiding restoration of native fire regimes and
resilient landscapes (Hessburg et al. 2016). After decades
of fire exclusion and a gradual infilling of forest land-
scapes, recent wildfires within the past three decades
have burned with large patches of high severity (Cansler
and McKenzie 2014, Reilly et al. 2017). Fuel reduction
treatments that thin canopy fuels and reduce surface
fuels appear to be effective strategies for restoring land-
scape patterns that are more resilient to large wildfire
events.

FIG. 9. Local importance of predictor variable groups for random forest models used to model spatial patterns of fire severity
for the 2014 Carlton Complex in central Washington State. Models were developed separately for the north (top row) and south
(bottom row) study areas. Importance values range from 0 to 100, with larger values indicating higher relative importance. Predictor
variables included in each group are described in Table 1.
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Fuel treatment effectiveness was reduced but not
eliminated on extreme fire weather days

Treatments tended to reduce fire severity overall but
were much less effective under extreme weather (Figs. 3,
10, Appendix S1: Fig. S2). However, our study showed
that while the incidence of local controls provided by
fuel reduction treatments was lower under extreme
weather conditions, where treatments were effective (i.e.,
had high local variable importance) they tended to exhi-
bit a strong mitigating effect (Fig. 10, Appendix S1:
Fig. S6). This was particularly true for burning treat-
ments (ThinUB, UB, WF). Similar results were found
for the 2013 Rim Fire in California, which similarly
experience periods of extreme (i.e., plume-dominated)
and mild weather conditions (Povak et al., 2020). Previ-
ous studies have found that fuel treatments involving
broadcast burning of surface fuels (e.g., past wildfires,
prescribed burns and thinning or clear-cutting with pre-
scribed understory or broadcast burns) are generally
more effective than thin-only or thin and pile burn treat-
ments (see Ful�e et al. 2012, Stephens et al. 2012 for
reviews). Our results corroborate these studies but offer
a rare evaluation of how treatments fared on wind-dri-
ven progressions compared to those that burned under
milder weather conditions. All treatment areas burned
with lower proportions of unburned and low severity fire
during early fire progressions (i.e., extreme weather;
Fig. 3). Simultaneous autoregression analysis shows that

ThinUB treatments were the most effective, followed by
Thin and UB treatments. All treatment types were more
effective in later progressions under milder fire weather
conditions, and differences between treatments were less
pronounced (Appendix S1: Fig. S6). Some treatment
types such as clear-cut and broadcast burn and thin and
pile burn were not significantly related to fire severity,
which is likely due to low sample size, but treatment type
could have also contributed to the lack of significance.
Random forest analyses showed that high modeled

local importance was generally associated with lower fire
severity providing further evidence of local controls pro-
vided by past treatments across burn periods. The RF
analysis revealed more differentiation among treatments
in the north (Fig. 9), largely related to higher predicted
severities for ThinPB treatments. Overall, Thin, Thi-
nUB, and UB treatments, along with past wildfire (WF),
appeared to be the most effective at mitigating fire sever-
ity. High local importance for fuel treatments in the RF
models was identified in the north, even during burn
periods with large fire growth (Fig. 10). Effective treat-
ments in the north corresponded roughly with leeward
south and southwest-facing aspects that may have been
partially sheltered from the strong prevailing winds com-
ing from the north and northwest (Appendix S1:
Fig. S1). This finding provides some evidence that lower
fire severity was associated with treatments situated on
leeward slopes in relation to the predominant wind
direction during wind-driven fire progressions. Leeward

FIG. 10. Map of local variable importance (imp.) for the treatment predictor variable from random forest modeling. Local
importance values range between 0 and 1 and classes are high (0.75–1.0), moderate (0.5–0.74), and low importance (0–0.49). Treat-
ments are clear cut and broadcast burn (CCBB); thin-only (Thin); thin and pile burn (ThinPB), thin and prescribed underburn (Thi-
nUB), prescribed underburn only (UB) and past wildfire (WF). Early runs include area burned by the Carlton Fire between 15 and
18 July under extreme weather conditions, while later runs occurred between 19 July and 7 August under milder weather conditions.
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treatments may have slowed fire growth during this per-
iod but did not appear to be absolute barriers to fire
spread. However, there is evidence that a set of fuel treat-
ments, located along a leeward ridge in the southeastern
section of the north study area, mitigated fire severity
and contributed to a large unburned island between the
north and south study areas. More research is warranted
in identifying treatment effectiveness as a function of ter-
rain positioning in relation to the prevailing winds dur-
ing fire spread. Interestingly, in the north study area, the
RF methods identified high local importance for the
treatment variable where no treatment occurred
(Fig. 10). This possibly indicated that the lack of treat-
ment led to higher severities than would have otherwise
been predicted if the area had been treated and may pro-
vide support for directing future fuel treatments.
With longer wildfire seasons and a growing incidence

of extreme fire weather events, planning for wind-driven
fire growth in drought-impacted forests is increasingly
necessary. As fire and fuels managers evaluate options
for increasing landscape resilience and resistance to
future climate change and wildfires, strategic placement
of fuel treatments may be guided by retrospective studies
of past large wildfire events. Our results suggest that dur-
ing strong wind-driven fire spread, fuel treatments that
were located on leeward slopes to prevailing winds dur-
ing fire progression tended to have lower fire severity.
The wind-driven progression on 17–18 July during the
Carlton fire originated from a weather system that
moved from the Pacific Coast to interior Washington
State and was funneled through the Methow Valley,
leading to strong, directional winds. These winds, as well
as the wind patterns observed during the 2006 Tripod
Complex, and large fires of 2015 in north-central Wash-
ington State, were typical of summer wildfire weather.

This suggests that modeling of predominant summer
wind characteristics can be a useful tool in strategic
planning of landscape treatment prioritizations (Hess-
burg et al. 2015).
Although treatment type was a significant variable in

SAR and RF models, some of the other variables of
interest, such as treatment size, distance to treatment
edge, and time since fire, were also significant predictors
of fire severity but based on their low importance, were
not included in final SAR and RF models. Size of treat-
ments may be an important factor in treatment effective-
ness because larger units contain more interior area.
Previous studies have demonstrated gradients in fire
severity from the edge of treatments to more interior
areas (Safford et al. 2009, Kennedy and Johnson 2014;
Povak et al., 2020). Similarly, time since fire was a signif-
icant predictor of fire severity but was not included in
final SAR models and exhibited low variable importance
in RF models (Fig. 7). A potential reason for the lack of
inclusion of the time since fire variable in SAR analyses
is the generic assignment of 100 yr for pixels that did
not have any record of recent treatment. Treatment size
and distance to edge may have had low predictive power
because treated areas represented a low percentage of
the overall study areas. Furthermore, treatments tended
to be clustered in certain areas, thereby creating a medi-
ating effect of neighboring treatments that reduced the
effect of treatment size in the models. For the RF mod-
els, partial plots for the south revealed steep increases in
severity for reburns between 0 and 5 yr old and severities
gradually increased for older reburn patches. For the
north, the time-since-fire mosaic played less of a role
even within recent reburns and effect of past fires leveled
off for reburns >20 yr old. Parks et al. (2015) found that
previous wildfire reduced subsequent fire severity up to

FIG. 11. Variance decomposition plot depicting the percentage of the out-of-bag variance explained by random forest models
for individual predictor variable groups (non-overlapping regions) and shared among predictor variable groups (overlapping
regions). Residuals are the remaining variance left unexplained by each model and are equal to 100 � R2. Variable groups are
weather (W), fuels/vegetation (F), topography (T), and spatial autocorrelation (SA). Predictor variables included in each group are
described in Table 1.
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6–18 yr after fire. Parks et al. (2014b) also found that
past wildfires reduced subsequent fire severity for up to
22 yr within wilderness areas in Idaho and New Mexico.
Prichard and Kennedy (2014) found that treatment age
and size were weak but significant predictors of fire
severity in the 2006 Tripod Complex fire with lower
severity with greater time-since-fire and small treatment
units. However, they noted that several past wildfires
and thin and prescribed burn units had low fire severity
even 20 yr or more post-treatment. In this study, time
since fire may not have been significant due to a limita-
tion in record length (i.e., few treatments were included
in the study that were older than 20 yr).

Landform and vegetation influenced fire severity

Final SAR models of the north and south areas
demonstrated strong correlations between fire weather
variables (i.e., wind and maximum temperature) and fire
severity but also some topographical constraints. The
influence of landform and vegetation/fuels on fire sever-
ity revealed some differences between the north and
south study areas. In particular, fire severity was posi-
tively correlated with both canopy cover and elevation in
the north study area, likely reflecting the higher severity
fire effects in montane, mixed conifer forests. The nega-
tive correlation with maximum solar radiation also sug-
gests that burn severity tended to be lower in more open,
low elevation forest types in the north study area. In
contrast, canopy cover is negatively correlated with fire
severity in the south study area, and elevation is only
weakly but positively correlated with severity. Low eleva-
tion ponderosa pine forests are more common in the
south study area, and the more xeric ponderosa pine for-
ests located in valleys had low canopy cover and were
likely less prone to high-severity fire.
The variance decomposition results from RF indi-

cated a high degree of shared variance explained across
the variable groups, suggesting that controls on fire
severity patterns are not independent of one another but
rather are highly interactive (Fig. 11). Largest sources
of shared variance were between weather, fuels/vegeta-
tion and spatial autocorrelation for the north study area
and weather and spatial autocorrelation in the south. In
the north, results corroborate the previous findings that
the fire was driven largely by strong winds, leading to a
high level of contagion (spatial autocorrelation). How-
ever, it also suggests that continuous fuels may have also
contributed to the high spatial contagion in this region.
In the south, higher levels of pure variance explained by
the weather, fuels, and topography and the lower relative
influence of spatial autocorrelation suggest a higher level
of local control on fire severity patterns.

SAR and RF methods are complementary

Although SAR and RF model approaches have both
been used to evaluate fuel treatment effectiveness, this is

the first study to offer comparative analyses using the
same fire severity data set. We found that the approaches
are complimentary and highly instructive as a combined
approach for landscape analyses of fire severity. Simulta-
neous autoregression makes use of a full neighborhood
of pixels without subsampling and is the recommended
approach to ensure that models avoid type I errors and
incorrect inferences (Ver Hoef et al. 2017). Although RF
used subsampled data sets, model inference was nearly
identical to that of SAR, and the combination of
approaches ensures that correct inferences were made in
both approaches.
The SAR models presented here show a high level of

SA (k > 0.96), which is illustrated in the map of pre-
dicted severity where the majority of the spatial variation
in severity occurs via the SA error component (Fig. 6).
The environmental predictors and SA error patterns
modeled by SAR provide accurate representations of
observed severity. Simultaneous autoregression model-
ing integrates SA directly into a linear modeling frame-
work by incorporating severity information from
neighboring cells into the model directly and scales their
level of influence through a parameter (i.e., k in Table 3).
Spatial autocorrelation thus tends to be the most impor-
tant predictor in SAR models and appears to somewhat
mask the spatial importance of other predictor variables
when compared to the RF model results, which reveal a
larger contribution of environmental and fuel treatment
variables in explaining severity patterns. Furthermore,
the RF modeling explicitly modeled the non-stationarity
in the strength of environmental and spatial autocorrela-
tion predictors, which showed considerable variation in
the relative roles of each. The high correlation between
intercept-only SAR model and the final SAR model pre-
dictions was >0.9, suggesting a minor contribution of
the explanatory variables to the predicted values. Simi-
larly, the magnitude of the coefficients in the fitted SAR
models was relatively low compared to the RBR scale,
suggesting that severity was relatively insensitive to the
spatial covariates, including the treatment variable
(Table 4). This result appears to be corroborated by the
RF modeling, which showed low variability in treatment
effectiveness across treatment types relative to the
untreated pixels (Fig. 9).
The RF modeling approach offers a refinement to

SAR in that it can incorporate nonlinear effects and
interactions among predictor variables without a priori
knowledge, include SA predictor variables, and evaluate
local importance measures including fuel treatment
effectiveness. Approaches such as SAR use global mea-
sures of variable importance or global coefficients (i.e.,
average effect size and significance) to represent empiri-
cal relationships between fire severity and environmental
covariates, which are known to be highly variable and
interactive across landscapes. This is particularly prob-
lematic for categorical variables such as fuel treatment
type that are spatially discontinuous and often domi-
nated by untreated pixels. Our results suggest that local
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measures of importance from RF analyses can reveal
patterns that otherwise may be obfuscated by global
assessments of variable importance that most other
models provide.
In our assessment, fuel treatments were grouped with

other fuel/vegetation variables in the RF local impor-
tance and variance decomposition analyses. Because of
this association, it was difficult to separate vegetation
effects (i.e., canopy cover) from the effectiveness of fuels
reduction treatments in our models. Local importance
values from RF modeling showed some spatial corre-
spondence between high treatment variable importance
on southern aspects, but results were not definitive. Vari-
ance decomposition results showed shared variance was
slightly higher between topography and fuels compared
to topography and weather, suggesting that the topo-
graphically entrained variability in fuels (accounting for
SA) was slightly more important to fire severity than ter-
rain routing of fire weather (Fig. 11). The difficulty in
disentangling the effects of vegetation, topography,
weather, and fuel treatments on fire severity cannot be
understated and is not necessarily a deficiency of the
modeling approach. The main effect of fuel treatments is
to reduce tree density, remove ladder fuels, lower surface
fuel continuity and biomass, and, in turn, reduce subse-
quent fire severity. Within the Carlton Complex land-
scape, our finding that treatments were most effective on
south-facing, leeward slopes, may be a product of treat-
ment and also may be driven by the higher rates of inci-
dent solar radiation (i.e., a function of topography)
leading to more open forested conditions on southern
aspects (i.e., a function of vegetation). Furthermore,
wind speeds generally are reduced on leeward compared
to windward slopes, which also could have contributed
to lower severities (i.e., a function of weather).
To date, both SAR and RF modeling are useful tools

for retrospective evaluation of the landscape drivers of
fire severity. More research is needed to identify methods
to determine tradeoffs in empirical models used to
explain fire severity patterns and how to make results
generalizable across wildfires in other environments.
However, without better understanding of how to
resolve the effect of spatial autocorrelation in a model-
ing environment, retrospective models cannot effectively
forecast the severity of future wildfire events. Paired
wildfire simulation modeling has been shown to assist in
evaluation of drivers of fire spread and severity (e.g.,
Coen et al. 2018) and offers a promising approach for
future studies.
Random forest modeling has been used extensively in

fire severity modeling, but controlling for SA in RF
models has generally been restricted to minimum spac-
ing among samples. In this study, we incorporated spa-
tially explicit covariates into the RF model via spatial
eigenvector mapping (i.e., PCNM). The RF models
identified broad-scale SA patterns via the low-order
PCNM axes included in the models. These variables
were highly interactive with weather, vegetation, and

topography variables (Fig. 11), suggesting that relation-
ships among predictors and fire severity varied over
space and across burn periods (i.e., exhibiting non-sta-
tionarity). Principal components of neighborhood
matrices axes were more influential in the north, and
high variable importance for PCNM axes corresponded
with areas where the fire burned under extreme weather
conditions resulting in large high-severity patches
(Fig. 1). The local importance maps for SA (Fig. 10)
generally were in agreement with the SAR predictions
related to the spatial component (Fig. 5, right column).
Given the premise that large high-severity patches in the
early progression days were driven by extreme weather
conditions, it was surprising that weather variables were
not more strongly influential. The high importance of
PCNM axes likely relates to the fact that (1) the conta-
gion of the fire itself overwhelmed all other environmen-
tal control, (2) they exhibited shared variance with
weather and fuels/vegetation variables indicating that
interactions among these variables in this region likely
contributed to high severity, and (3) other fire weather
variables not included such as those incorporating fuel
moisture or more localized wind speed and direction
could potentially contribute to the variance explained by
weather variables (e.g., Coen et al. 2018).

Management implications

As the incidence and area burned of large wildfires
increases across fire-prone landscapes of the western
United States (Stavros et al. 2014, Abatzoglou and Wil-
liams 2016, Westerling 2016), the impact of wildfires is
often outpacing that of other fuel reduction treatments
such as thinning and prescribed burning or managed
natural ignitions (Calkin et al. 2015, Vaillant and Rein-
hardt 2017), at times with markedly different patterns of
fire severity. Although trends in fire severity are not
always toward greater stand replacement (Doerr and
Santin 2016, Reilly et al. 2017), recent summer wildfires
in north-central Washington State have been dominated
by large, severe events particularly large patches of stand
replacement during large fire growth days (Cansler and
McKenzie 2014, Reilly et al. 2017). Of forestland area
that burned within the Carlton Complex, 24% percent
burned as moderate and 49% as high severity. Consider-
ing this wildfire event as a type of fuel reduction treat-
ment, the Carlton Complex resulted in high tree
mortality and as a large-scale change agent. Given
future climatic change scenarios, many of the drier sites
dominated by ponderosa pine may not return to forested
conditions (Stevens-Rumann et al. 2017, Kemp et al.
2019). In addition, as dead trees decay and fall following
post-fire mortality, accumulated fine and coarse wood
may lead to reburn events and further challenge forest
regeneration (Peterson et al. 2015, Prichard et al. 2017).
On some landscapes, fire-vegetation interactions may be
restoring patchwork mosaics of grasslands and shrub-
lands (Hessburg et al. 2019) but given rapid changes in
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climate could also be contributing to accelerated rates of
forest conversion across dry mixed conifer forests (Parks
et al. 2019). Past fuel treatments and small wildfire
events mitigated fire severity, even under the most severe
fire spread days. This finding provides evidence support-
ing the utility of fuel treatments in increasing landscape
resilience to large, summer wildfire events and resistance
to vegetation type changes. Our findings also suggest
that we need a better understanding of the strategic
placement of treatments to maximize the likelihood of
them remaining effective during wind-driven fire spread
periods.
A number of approaches are being used to restore

more resilient forest structure and landscape mosaics to
semiarid forests across western north America. These
include managing unplanned ignitions for resource bene-
fit, prescribed burning, and mechanical thinning to
remove understory and midstory trees that can act as
ladder fuels and contribute to more severe wildfire
effects. Although thinning alone can be somewhat effec-
tive at mitigating wildfires (e.g., Safford et al. 2009, Ful�e
et al. 2012, Prichard and Kennedy 2014), it can also con-
tribute to surface fuel biomass accumulation and more
severe wildfire effects. Of these approaches, fire, either
from planned or unplanned ignitions, is generally the
most effective at reducing surface fuels and increasing
the resilience of forests to subsequent fire events.
In this study, we found that a range of fuel treatments,

including Thin and ThinUB, effectively reduced fire
severity relative to untreated pixels during milder fire
weather days. Wind-driven fire weather put all treat-
ments to the test and suggest that ThinUB treatments
were most effective at mitigating fire severity during
these events. Wildland fire burns as a contagious process,
and fire weather, associated with antecedent drought,
high temperatures, low relative humidity and strong
winds driving fire spread reduces thresholds to burning.
Our results suggest that thinning on its own can mitigate
fire severity but is much less effective during extreme fire
weather. Higher fire severity and reduced treatment
effectiveness in the north study area provides strong evi-
dence of this and the importance of recent fuel reduction
treatments that involved prescribed burning.
Landscape mosaics of past fires and fuel reduction

treatments can be integral in providing sources of natu-
ral regeneration to accelerate forest recovery in neigh-
boring high-severity patches and contribute to habitat
and overall landscape heterogeneity. Some of the most
promising examples of using unplanned ignitions to
restore landscape resiliency to fire come from wilderness
areas where fire has returned as an ecological process
since the 1970 “let it burn” policy was adopted. For
example, in New Mexico’s Gila Aldo Leopold Wilder-
ness, there is evidence that past fires either act as tempo-
rary barriers to subsequent fire spread or alter fire

severity (Holden et al. 2010, Parks et al. 2014b). Addi-
tionally, resilient forest structure, including dominance
of large-diameter, fire resistant trees such as ponderosa
pine or western larch, are perpetuated by repeat wildfires
(Holden et al. 2007). Grand Canyon and Yosemite
National Parks have both used unplanned ignitions in
remote areas of the parks and strategically allowed fires
to increase their ecological footprints over the decades
of fire management (Collins et al. 2007, Boisram�e et al.
2017, van Wagdentonk et al. 2012, Coppelleta et al.
2016). Outside of wilderness areas and national parks,
many regions of the western United States, including
that of the 2014 Carlton Complex, have a growing
impact on the wildland-urban interface. Use of
unplanned ignitions is challenging in these areas due to
risk and smoke management concerns. As an alternative,
a combination of mechanical thinning and prescribed
burning treatments are used, but require favorable burn
windows to reduce smoke impacts to neighboring com-
munities. However, costs, available resources, and suffi-
cient burn windows often limit the amount of area
treated (Ryan et al. 2013).
Although much has been learned about the type and

duration of fuel treatment effectiveness, less in known
about how to strategically place treatments on land-
scapes and how they may interact with fires during large
fire growth days. For example, fuel treatments were gen-
erally more effective on leeward slopes in our study,
which may suggest a strategy for increasing overall land-
scape resilience to future wildfire events may be to evalu-
ate wind probabilities during peak summer wildfire
seasons. Wind modeling can be used to develop proba-
bility grids of wind speed and direction to help strategi-
cally allocate fuel treatments on topographic positions
that may be protected from severe winds. These data
could then be used to determine where fuel treatments
might be strategically placed to help slow fire spread and
mitigate wildfire severity. Such information can also be
used in larger planning efforts to optimize the value of
treatments across landscapes or larger planning areas.
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